Perturbation theory Quantum mechanics 2 - Lecture 2

Igor Lukačević

UJJS, Dept. of Physics, Osijek

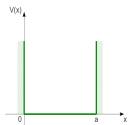
17. listopada 2012.

- Time-independent nondegenerate perturbation theory
 - General formulation
 - First-order theory
 - Second-order theory
- 2 Time-independent degenerate perturbation theory
 - General formulation
 - Example: Two-dimensional harmonic oscilator
- 3 Time-dependent perturbation theory
- 4 Literature

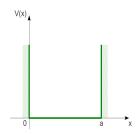
Contents

- 1 Time-independent nondegenerate perturbation theory
 - General formulation
 - First-order theory
 - Second-order theory
- 2 Time-independent degenerate perturbation theory
 - General formulation
 - Example: Two-dimensional harmonic oscilator
- 3 Time-dependent perturbation theory
- 4 Literature

Do you remember this?



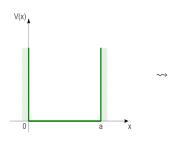
Do you remember this?

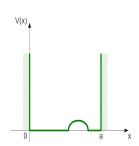


$$H^0\psi^0_n=E^0_n\psi^0_n$$

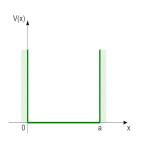
$$\langle\psi^0_n|\psi^0_m\rangle=\delta_{nm}\quad\rightarrow\quad\text{complete set}$$

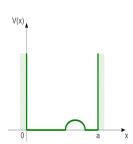
Now, let us kick the potential bottom a little...





Now, let us kick the potential bottom a little...





What we'd like to solve now is...

$$H\psi_n = E_n\psi_n$$

A question

Does anyone have an idea how?

$$H = H^0 + \lambda H'$$

$$H = \underline{\mathbf{H}^0} + \lambda H'$$

- unperturbed Hamiltonian
- perturbation Hamiltonian
- small parameter

$$H = H^0 + \lambda \underline{\mathbf{H}'}$$

- unperturbed Hamiltonian
- perturbation Hamiltonian
- small parameter

$$H = H^0 + \frac{\lambda}{\lambda}H'$$

- unperturbed Hamiltonian
- perturbation Hamiltonian
- small parameter

Name	Description	Hamiltonian
L-S coupling	Coupling between orbital and	$H = H_0 + f(r)\vec{L}\cdot\vec{S}$
	spin angular momentum in a one-electron atom	$H' = f(r)\vec{L} \cdot \vec{S}$ $H_0 = p^2/2m - Ze^2/r$
Stark effect	One-electron atom in a constant	$H_0 = \rho / 2M - 2e / r$ $H = H_0 + e\mathbb{E}_0 z$
	uniform electric field $ec{\mathbb{E}}=ec{e_z}\mathbb{E}_0$	$H' = e\mathbb{E}_0 z$ $H_0 = p^2/2m - Ze^2/r$
Zeeman effect	One-electron atom in a constant	$H = H_0 + (e/2mc)\vec{J} \cdot \vec{\mathbb{B}}$
	uniform magnetic field $\mathbb B$	$H' = (e/2mc)\vec{J} \cdot \vec{\mathbb{B}}$ $H_0 = p^2/2m - Ze^2/r$
Anharmonic	Spring with nonlinear restoring	$H = H_0 + K' x^4$
oscilator	force	$H' = K'x^4$ $H_0 = p^2/2m + 1/2Kx^2$
Nearly free	Electron in a periodic lattice	$H = H_0 + V(x)$
electron model		$V(x) = \sum_{n} V_n exp[i(2\pi nx/a)]$ $H_0 = p^2/2m$

- \sharp H' is small compared to H₀
- # eigenstates and eigenvalues of H do not differ much from those of H₀
- \sharp eigenstates and eigenvalues of H_0 are known

- \sharp H' is small compared to H₀
- \sharp eigenstates and eigenvalues of H do not differ much from those of H₀
- # eigenstates and eigenvalues of H₀ are known

expand

$$\psi_n = \psi_n^0 + \lambda \psi_n^1 + \lambda^2 \psi_n^2 + \dots,$$

$$E_n = E_n^0 + \lambda E_n^1 + \lambda^2 E_n^2 + \dots$$

- \sharp H' is small compared to H₀
- \sharp eigenstates and eigenvalues of H do not differ much from those of H $_0$
- \sharp eigenstates and eigenvalues of H_0 are known

expand

$$\psi_n = \psi_n^0 + \lambda \psi_n^1 + \lambda^2 \psi_n^2 + \dots,$$

$$E_n = E_n^0 + \lambda E_n^1 + \lambda^2 E_n^2 + \dots$$

and sort

$$\begin{array}{lclcrcl} (\lambda^{0}) \dots & H^{0}\psi^{0}_{n} & = & E^{0}_{n}\psi^{0}_{n}\,, \\ (\lambda^{1}) \dots & H^{0}\psi^{1}_{n} + H'\psi^{0}_{n} & = & E^{0}_{n}\psi^{1}_{n} + E^{1}_{n}\psi^{0}_{n}\,, \\ (\lambda^{2}) \dots & H^{0}\psi^{2}_{n} + H'\psi^{1}_{n} & = & E^{0}_{n}\psi^{2}_{n} + E^{1}_{n}\psi^{1}_{n} + E^{2}_{n}\psi^{0}_{n}\,, \\ & & \vdots \end{array}$$

Making $\langle \psi_n^0 | / (\lambda^1)$ and using the normalization property of ψ_n^0 , we get

First-order correction to the energy

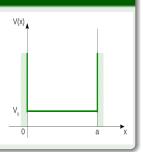
$$E_n^1 = \langle \psi_n^0 | H' | \psi_n^0 \rangle$$

For calculation details, see Refs [2], [3] and [4].

$$E_n^1 = \langle \psi_n^0 | H' | \psi_n^0 \rangle$$

Example 1

Find the first-order corrections to the energy of a particle in a infinite square well if the "floor" of the well is raised by an constant value V_0 .

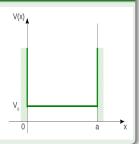


$$\textit{E}_{\textit{n}}^{1} = \langle \psi_{\textit{n}}^{0} | \textit{H}' | \psi_{\textit{n}}^{0} \rangle$$

Example 1

Find the first-order corrections to the energy of a particle in a infinite square well if the "floor" of the well is raised by an constant value V_0 .

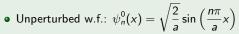
• Unperturbed w.f.: $\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$



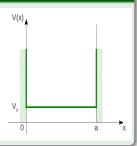
$$\textit{E}_{\textit{n}}^{1} = \langle \psi_{\textit{n}}^{0} | \textit{H}' | \psi_{\textit{n}}^{0} \rangle$$

Example 1

Find the first-order corrections to the energy of a particle in a infinite square well if the "floor" of the well is raised by an constant value V_0 .



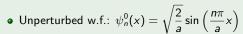
• Perturbation Hamiltonian: $H' = V_0$



$$E_n^1 = \langle \psi_n^0 | H' | \psi_n^0 \rangle$$

Example 1

Find the first-order corrections to the energy of a particle in a infinite square well if the "floor" of the well is raised by an constant value V_0 .

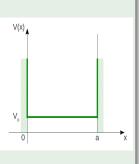


• Perturbation Hamiltonian: $H' = V_0$

First-order correction:

$$E_n^1 = \langle \psi_n^0 | V_0 | \psi_n^0 \rangle = V_0 \langle \psi_n^0 | \psi_n^0 \rangle = V_0$$

 \Rightarrow corrected energy levels: $E_n \approx E_n^0 + V_0$



Find the first-order corrections to the energy of a particle in a infinite square well if the "floor" of the well is raised by an constant value V_0 .

• Unperturbed w.f.:
$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

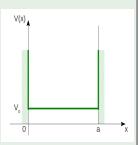
• Perturbation Hamiltonian: $H' = V_0$

• First-order correction:

$$\textit{E}_{\textit{n}}^{1} = \langle \psi_{\textit{n}}^{0} | \textit{V}_{0} | \psi_{\textit{n}}^{0} \rangle = \textit{V}_{0} \langle \psi_{\textit{n}}^{0} | \psi_{\textit{n}}^{0} \rangle = \textit{V}_{0}$$

 \Rightarrow corrected energy levels: $E_n \approx E_n^0 + V_0$

Compare this result with an exact solution



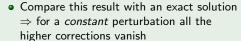
Find the first-order corrections to the energy of a particle in a infinite square well if the "floor" of the well is raised by an constant value V_0 .

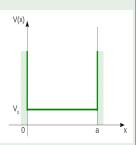
• Unperturbed w.f.:
$$\psi_n^0(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

- Perturbation Hamiltonian: $H' = V_0$
- First-order correction:

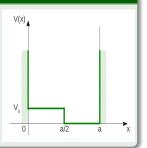
$$\textit{E}_{\textit{n}}^{1} = \langle \psi_{\textit{n}}^{0} | \textit{V}_{0} | \psi_{\textit{n}}^{0} \rangle = \textit{V}_{0} \langle \psi_{\textit{n}}^{0} | \psi_{\textit{n}}^{0} \rangle = \textit{V}_{0}$$

 \Rightarrow corrected energy levels: $E_n \approx E_n^0 + V_0$





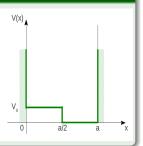
Now, cut the perturbation to only a half-way across the well



Example 1 (cont.)

Now, cut the perturbation to only a half-way across the well

$$\Rightarrow E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2\left(\frac{n\pi}{a}x\right) dx = \frac{V_0}{2}$$

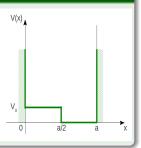


Example 1 (cont.)

Now, cut the perturbation to only a half-way across the well

$$\Rightarrow E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2\left(\frac{n\pi}{a}x\right) dx = \frac{V_0}{2}$$

HW. Compare this result with an exact one.



Now we seek the first-order correction to the wave function.

$$(\lambda^1)$$
 and $\psi^1_n = \sum_{m
eq n} c_{mn} \psi^0_m$ give

First-order correction to the wave function

$$\psi_n^1 = \sum_{m \neq n} \frac{\langle \psi_m^0 | H' | \psi_n^0 \rangle}{(E_n^0 - E_m^0)} \psi_m^0$$

For calculation details, see Refs [2], [3] and [4].

First-order correction to the wave function

$$\psi_n^1 = \sum_{m \neq n} \frac{\langle \psi_m^0 | H' | \psi_n^0 \rangle}{(E_n^0 - E_m^0)} \psi_m^0$$

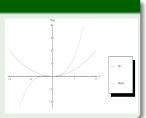
For calculation details, see Refs [2], [3] and [4].

In conclusion

First-order perturbation theory gives:

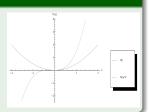
- often accurate energies
- poor wave functions

Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.



Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

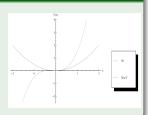
• Hamiltonian: $H = -\frac{\hbar^2}{2m} \frac{d^2}{dx} + \frac{1}{2}kx^2 + ax^3$



Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

• Hamiltonian:
$$H = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x} + \frac{1}{2}kx^2 + ax^3$$

• H⁰ eigenenergies: $E_n^0 = \left(n + \frac{1}{2}\right)\hbar\omega$



Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

• Hamiltonian:
$$H = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x} + \frac{1}{2}kx^2 + ax^3$$

•
$$H^0$$
 eigenenergies: $E_n^0 = \left(n + \frac{1}{2}\right)\hbar\omega$

H⁰ eigenfunctions:

$$\psi_n^0(x) = \sqrt{\frac{1}{2^n n!}} \sqrt{\frac{\alpha}{\pi}} e^{-\frac{\alpha x^2}{2}} H_n(x \sqrt{\alpha})$$

$$\begin{array}{ccc}
 & n & H_n(\xi) \\
0 & 1 \\
1 & 2\xi \\
2 & 4\xi^2 & 2
\end{array}$$

$$4\xi^{2} - 2$$

 $8\xi^{3} - 12\xi$

1
$$2\xi$$

2 $4\xi^2 - 2$
3 $8\xi^3 - 12\xi$
4 $16\xi^4 - 48\xi^2 + 12$

5
$$32\xi^5 - 160\xi^3 + 120\xi$$

Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

• Hamiltonian:
$$H = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x} + \frac{1}{2}kx^2 + ax^3$$

•
$$H^0$$
 eigenenergies: $E_n^0 = \left(n + \frac{1}{2}\right)\hbar\omega$

H⁰ eigenfunctions:

$$\psi_n^0(x) = \sqrt{\frac{1}{2^n n!} \sqrt{\frac{\alpha}{\pi}}} e^{-\frac{\alpha x^2}{2}} H_n(x\sqrt{\alpha})$$

$$\Rightarrow E_n^1 = \langle \psi_n^0 | a x^3 | \psi_n^0 \rangle = 0$$

$$\begin{array}{ccc} n & H_n(\xi) \\ \hline 0 & 1 \\ 1 & 2\xi \\ 2 & 4\xi^2 - 2 \\ 3 & 8\xi^3 - 12\xi \\ 4 & 16\xi^4 - 48\xi^2 + 12 \\ 5 & 32\xi^5 - 160\xi^3 + 120\xi \end{array}$$

5
$$32\xi^5 - 160\xi^3 + 120\xi$$

Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

• Hamiltonian:
$$H = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x} + \frac{1}{2}kx^2 + ax^3$$

$$ullet$$
 H 0 eigenenergies: $E_n^0 = \left(n + \frac{1}{2}\right)\hbar\omega$

H⁰ eigenfunctions:

$$\psi_n^0(x) = \sqrt{\frac{1}{2^n n!}} \sqrt{\frac{\alpha}{\pi}} e^{-\frac{\alpha x^2}{2}} H_n(x\sqrt{\alpha})$$

$$\Rightarrow$$
 $E_n^1 = \langle \psi_n^0 | ax^3 | \psi_n^0 \rangle = 0$

• For ψ_n^1 we need expressions $\langle \psi_m^0 | H' | \psi_n^0 \rangle$

$$2 4\xi^2 - 2$$

3
$$8\xi^3 - 12\xi$$

4 $16\xi^4 - 48\xi^2 \perp$

$$5 \qquad 32\xi^5 - 160\xi^3 + 120\xi$$

Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

- Hamiltonian: $H = -\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x} + \frac{1}{2}kx^2 + ax^3$
- H^0 eigenenergies: $E_n^0 = \left(n + \frac{1}{2}\right)\hbar\omega$
- H⁰ eigenfunctions:

$$\psi_n^0(x) = \sqrt{\frac{1}{2^n n!}} \sqrt{\frac{\alpha}{\pi}} e^{-\frac{\alpha x^2}{2}} H_n(x\sqrt{\alpha})$$

$$\Rightarrow$$
 $E_n^1 = \langle \psi_n^0 | a x^3 | \psi_n^0 \rangle = 0$

- For ψ_n^1 we need expressions $\langle \psi_m^0 | H' | \psi_n^0 \rangle$
 - \leftrightarrow for $m = n \pm 2k$, $k \in \mathbb{Z}$ these are zero

$$\begin{array}{ccc} n & H_n(\xi) \\ \hline 0 & 1 \\ 1 & 2\xi \\ 2 & 4\xi^2 - 2 \\ 3 & 8\xi^3 - 12\xi \\ 4 & 16\xi^4 - 48\xi^2 + 12 \\ 5 & 32\xi^5 - 160\xi^3 + 12 \end{array}$$

2
$$4\xi^2 - 2$$

3 $8\xi^3 - 12\xi$

4
$$16\xi^4 - 48\xi^2 + 1$$

5
$$32\xi^5 - 160\xi^3 + 120\xi$$

Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

- Hamiltonian: $H = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x} + \frac{1}{2}kx^2 + ax^3$
- H^0 eigenenergies: $E_n^0 = \left(n + \frac{1}{2}\right)\hbar\omega$
- H⁰ eigenfunctions:

$$\psi_n^0(x) = \sqrt{\frac{1}{2^n n!} \sqrt{\frac{\alpha}{\pi}}} e^{-\frac{\alpha x^2}{2}} H_n(x\sqrt{\alpha})$$

$$\Rightarrow$$
 $E_n^1 = \langle \psi_n^0 | a x^3 | \psi_n^0 \rangle = 0$

- For ψ_n^1 we need expressions $\langle \psi_m^0 | H' | \psi_n^0 \rangle$
 - \leftrightarrow for $m=n\pm 2k$, $k\in\mathbb{Z}$ these are zero
 - \Rightarrow so, we'll, for example, take only these: m = n + 3, n + 1, n 1, n 3

n	$H_n(\xi)$
0	1
1	2ξ
2	$4\xi^2 - 2$
3	$8\xi^3 - 12\xi$
4	$16\xi^4 - 48\xi^2 + 12$
5	$32\xi^5 - 160\xi^3 + 120\xi$

Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

$$\langle n|ax^{3}|n+3\rangle = a \cdot \sqrt{\frac{(n+1)(n+2)(n+3)}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n+1\rangle = 3a \cdot \sqrt{\frac{(n+1)^{3}}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n-1\rangle = 3a \cdot \sqrt{\frac{n^{3}}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n-3\rangle = a \cdot \sqrt{\frac{n(n-1)(n-2)}{(2\alpha)^{3}}}$$

$$\begin{array}{ccc} n & H_n(\xi) \\ \hline 0 & 1 \\ 1 & 2\xi \\ 2 & 4\xi^2 - 2 \\ 3 & 8\xi^3 - 12\xi \\ 4 & 16\xi^4 - 48\xi^2 + 12 \\ 5 & 32\xi^5 - 160\xi^3 + 120\xi \end{array}$$

Example 2

Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

$$\langle n|ax^{3}|n+3\rangle = a \cdot \sqrt{\frac{(n+1)(n+2)(n+3)}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n+1\rangle = 3a \cdot \sqrt{\frac{(n+1)^{3}}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n-1\rangle = 3a \cdot \sqrt{\frac{n^{3}}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n-3\rangle = a \cdot \sqrt{\frac{n(n-1)(n-2)}{(2\alpha)^{3}}}$$

Energy differences

m
$$E_n - E_m$$

 $n+3$ $-3\hbar\omega$
 $n+1$ $-\hbar\omega$
 $n-1$ $\hbar\omega$
 $n-3$ $3\hbar\omega$

Example 2

Compute the first-order corrections for a harmonic oscilator with applied small perturbation $W = ax^3$.

$$\langle n|ax^{3}|n+3\rangle = a \cdot \sqrt{\frac{(n+1)(n+2)(n+3)}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n+1\rangle = 3a \cdot \sqrt{\frac{(n+1)^{3}}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n-1\rangle = 3a \cdot \sqrt{\frac{n^{3}}{(2\alpha)^{3}}}$$

$$\langle n|ax^{3}|n-3\rangle = a \cdot \sqrt{\frac{n(n-1)(n-2)}{(2\alpha)^{3}}}$$

Energy differences

$$\begin{array}{ccc} m & E_n - E_m \\ n+3 & -3\hbar\omega \\ n+1 & -\hbar\omega \\ n-1 & \hbar\omega \\ n-3 & 3\hbar\omega \end{array}$$

$$\Rightarrow \psi_{n}^{1} = \frac{a}{2\hbar\omega\alpha} \left[\frac{1}{3} \sqrt{\frac{n(n-1)(n-2)}{2\alpha}} \psi_{n-3}^{0} + 3n\sqrt{\frac{n}{2\alpha}} \psi_{n-1}^{0} - 3(n+1)\sqrt{\frac{n+1}{2\alpha}} \psi_{n+1}^{0} - \frac{1}{3} \sqrt{\frac{(n+1)(n+2)(n+3)}{2\alpha}} \psi_{n+3}^{0} \right]$$

Making $\langle \psi_n^0 | / (\lambda^2)$, using the normalization property of ψ_n^0 and orthogonality between ψ_n^0 and ψ_n^1 , we get

Second-order correction to the energy

$$E_n^2 = \sum_{m \neq n} \frac{|\langle \psi_m^0 | H' | \psi_n^0 \rangle|^2}{E_n^0 - E_m^0}$$

For calculation details, see Refs [2], [3] and [4].

Now we seek the second-order correction to the wave function.

$$(\lambda^2)$$
 and $\psi_n^1 = \sum_{m \neq n} c_{mn} \psi_m^0$ give

Second-order correction to the wave function

$$\psi_{n}^{2} = \sum_{m \neq n} \left[-\frac{\langle \psi_{n}^{0} | H' | \psi_{n}^{0} \rangle \langle \psi_{m}^{0} | H' | \psi_{n}^{0} \rangle}{(E_{n}^{0} - E_{m}^{0})^{2}} + \sum_{k \neq n} \frac{\langle \psi_{m}^{0} | H' | \psi_{k}^{0} \rangle \langle \psi_{k}^{0} | H' | \psi_{n}^{0} \rangle}{(E_{n}^{0} - E_{m}^{0})(E_{n}^{0} - E_{k}^{0})} \right] \psi_{m}^{0}$$

For calculation details, see Refs [2], [3] and [4].

General formulation
Example: Two-dimensional harmonic oscilator

Contents

- Time-independent nondegenerate perturbation theory
 - General formulation
 - First-order theory
 - Second-order theory
- Time-independent degenerate perturbation theory
 - General formulation
 - Example: Two-dimensional harmonic oscilator
- 3 Time-dependent perturbation theory
- 4 Literature

Contents
Time-independent nondegenerate perturbation theory
Time-independent degenerate perturbation theory
Time-dependent perturbation theory
Literature

General formulation

Example: Two-dimensional harmonic oscilator

Symmetry

Degeneracy

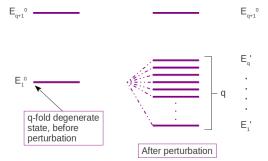
Perturbation

Symmetry

Degeneracy

Literature

Perturbation



Example: Two-dimensional harmonic oscilator

A question

What's wrong with

$$E_n^2 = \sum_{m
eq n} rac{|\langle \psi_m^0 | H' | \psi_n^0
angle|^2}{E_n^0 - E_m^0} \,, \, m,n \leq q$$

if unperturbed eigenstates are degenerate $E_1^0 = E_2^0 = \cdots = E_q^0$?

Example: Two-dimensional harmonic oscilator

$$H=H_0+H'$$

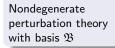
 $H_0\psi_n^0=E_n^0\psi_n^0$
 E_1^0 q-fold degenerate

Construct

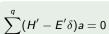
$$\varphi_n = \sum_{i=1}^q a_{nm} \psi_m^0$$

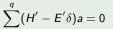
which diagonalizes submatrix of H':

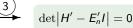
$$\langle \varphi_{\it n}| {\it H}'|\varphi_{\it k}\rangle = {\it E}'\delta_{\it nk}$$



 $\{\varphi_n\}$ Gives new basis 33







Matrix H' in basis \mathfrak{B}

Literature

Example: Two-dimensional harmonic oscilator

$$H=H_0+H'$$

 $H_0\psi_n^0=E_n^0\psi_n^0$
 E_1^0 q-fold degenerate

Construct

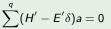
$$\varphi_n = \sum_{i=1}^q a_{nm} \psi_m^0$$

which diagonalizes submatrix of H':

$$\langle \varphi_n | H' | \varphi_k \rangle = E' \delta_{nk}$$

Nondegenerate perturbation theory with basis B

 $\{\varphi_n\}$ Gives new basis 33



$$\det \bigl| H' - E'_n I \bigr| = 0$$

$$\{a_{ni}\}$$

For
$$n=1,$$
 $\sum_{m=1}^q (H'_{pm}-E'_n\delta_{pm})a_{nm}=0$ appear as

$$\begin{pmatrix} H'_{11} - E'_1 & H'_{12} & H'_{13} & \dots & H'_{1q} \\ H'_{21} & H'_{22} - E'_1 & H'_{23} & \dots & H'_{2q} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ H'_{q1} & & & & \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1q} \end{pmatrix} = 0$$

Example: Two-dimensional harmonic oscilator

 $H = H_0 + H'$ $H_0 \psi_n^0 = E_n^0 \psi_n^0$ E_1^0 q-fold degenerate

1)

Construct

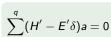
$$\varphi_n = \sum_{i=1}^q a_{nm} \psi_m^0$$

which diagonalizes submatrix of H':

$$\langle \varphi_n | H' | \varphi_k \rangle = E' \delta_{nk}$$

Nondegenerate perturbation theory with basis \mathfrak{B}

 $\{\varphi_n\}$ Gives new basis \mathfrak{B}



3

 $\det \bigl| H' - E'_n I \bigr| = 0$

 $\{a_{ni}\}$

 E_1', E_2', \ldots, E_q'

Example: Two-dimensional harmonic oscilator

The q roots of secular equation $\det |H' - E'_n I| = 0$ are the diagonal elements of the submatrix of H'.

Example: Two-dimensional harmonic oscilator

 $H=H_0+H'$ $H_0\psi_n^0=E_n^0\psi_n^0$ E_1^0 q-fold degenerate 1

Construct

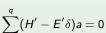
$$\varphi_n = \sum_{i=1}^q a_{nm} \psi_m^0$$

which diagonalizes submatrix of H':

$$\langle \varphi_{\it n}| {\it H}'|\varphi_{\it k}\rangle = {\it E}'\delta_{\it nk}$$

Nondegenerate perturbation theory with basis $\ensuremath{\mathfrak{B}}$

 $\{\varphi_n\}$ Gives new basis $\mathfrak B$



 $\Xi'\delta)a=0$

 $\det \bigl| H' - E'_n I \bigr| = 0$

 $\{a_{ni}\}$

Example: Two-dimensional harmonic oscilator

 $H=H_0+H'$ $H_0\psi_n^0=E_n^0\psi_n^0$ E_1^0 q-fold degenerate

Construct

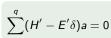
$$\varphi_n = \sum_{i=1}^q a_{nm} \psi_m^0$$

which diagonalizes submatrix of H':

$$\langle \varphi_n | H' | \varphi_k \rangle = E' \delta_{nk}$$

Nondegenerate perturbation theory with basis ${\mathfrak B}$

 $\{\varphi_n\}$ Gives new basis $\mathfrak B$



 $\frac{3}{\det}$

 $\det \left| H' - E'_n I \right| = 0$

 $\{a_{ni}\}$

 E_1', E_2', \ldots, E_q'

Example: Two-dimensional harmonic oscilator

$$H=H_0+H'$$

 $H_0\psi_n^0=E_n^0\psi_n^0$
 E_1^0 q-fold degenerate

Construct

$$\varphi_n = \sum_{i=1}^q a_{nm} \psi_m^0$$

which diagonalizes submatrix of H':

$$\langle \varphi_{\it n}| {\it H}'|\varphi_{\it k}\rangle = {\it E}'\delta_{\it nk}$$

Nondegenerate perturbation theory with basis B

 $\{\varphi_n\}$ Gives new basis 33

 $\sum^{q} (H' - E'\delta)a = 0$

 $\det |H' - E'_n I| = 0$

 $\{a_{ni}\}$

Example: Two-dimensional harmonic oscilator

$$H=H_0+H'$$

 $H_0\psi_n^0=E_n^0\psi_n^0$
 E_1^0 q-fold degenerate

Construct

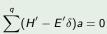
$$\varphi_n = \sum_{i=1}^q a_{nm} \psi_m^0$$

which diagonalizes submatrix of H':

$$\langle \varphi_n | H' | \varphi_k \rangle = E' \delta_{nk}$$

Nondegenerate perturbation theory with basis B

 $\{\varphi_n\}$ Gives new basis 33



 $\det |H' - E'_n I| = 0$

 $\{a_{ni}\}$

Example: Two-dimensional harmonic oscilator

$$H=H_0+H'$$

 $H_0\psi_n^0=E_n^0\psi_n^0$
 E_1^0 q-fold degenerate

Construct

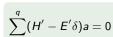
$$\varphi_n = \sum_{i=1}^q a_{nm} \psi_m^0$$

which diagonalizes submatrix of H':

$$\langle \varphi_n | H' | \varphi_k \rangle = E' \delta_{nk}$$

Nondegenerate perturbation theory with basis \mathfrak{B}

 $\{\varphi_n\}$ Gives new basis $\mathfrak B$



3

 $\det \bigl| H' - E'_n I \bigr| = 0$

 $\{a_{ni}\}$

$$\begin{array}{lll} \psi_n = \varphi_n & +\lambda \varphi_n^1 & +\lambda^2 \varphi_n^2 & +\dots & n \leq q \\ \psi_n = \psi_n^0 & +\lambda \psi_n^1 & +\lambda^2 \psi_n^2 & +\dots & n > q \\ E_n = E_n^0 & +\lambda E_n'^1 & +\lambda^2 E_n'^2 & +\dots & n \leq q \end{array} \quad \begin{array}{ll} (E_1^0 = \dots = E_q^0) \\ E_n & = & E_n^0 + \lambda E_n^1 + \lambda^2 E_n^2 + \dots & n > q \\ E_n' & = & \langle \varphi_n | H' | \varphi_n \rangle & n \leq q \\ E_n' & = & \langle \psi_n^0 | H' | \psi_n^0 \rangle & n > q \end{array}$$

$$\begin{array}{llll} \psi_{n} = \varphi_{n} & +\lambda\varphi_{n}^{1} & +\lambda^{2}\varphi_{n}^{2} & +\dots & n \leq q \\ \psi_{n} = \psi_{n}^{0} & +\lambda\psi_{n}^{1} & +\lambda^{2}\psi_{n}^{2} & +\dots & n > q \\ E_{n} = E_{n}^{0} & +\lambda E_{n}'^{1} & +\lambda^{2}E_{n}'^{2} & +\dots & n \leq q \end{array} \quad \begin{array}{ll} (E_{1}^{0} = \dots = E_{q}^{0}) \\ E_{n} & = & E_{n}^{0} + \lambda E_{n}^{1} + \lambda^{2}E_{n}^{2} + \dots & n > q \\ E_{n}' & = & \langle \varphi_{n} | H' | \varphi_{n} \rangle & n \leq q \\ E_{n}^{1} & = & \langle \psi_{n}^{0} | H' | \psi_{n}^{0} \rangle & n > q \end{array}$$

So, what do we get from degenerate perturbation theory:

- 1st-order energy corrections
- corrected w.f. (with nondegenerate states they serve as a basis for higher-order calculations)

• Two-dimensional harmonic oscilator Hamiltonian:

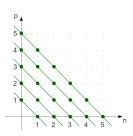
$$H_0 = \frac{p_x^2 + p_y^2}{2m} + \frac{K}{2}(x^2 + y^2)$$

$$\psi_{np} = \varphi_n(x)\varphi_p(y) \rightarrowtail |np\rangle$$

Two-dimensional harmonic oscilator Hamiltonian:

$$H_0 = \frac{p_x^2 + p_y^2}{2m} + \frac{K}{2}(x^2 + y^2)$$
$$\psi_{np} = \varphi_n(x)\varphi_p(y) \rightarrow |np\rangle$$

• $E_{np}=\hbar\omega(n+p+1)$ is (n+p+1)-fold degenerate. What's the degeneracy of $|01\rangle$ state?

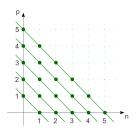


Two-dimensional harmonic oscilator Hamiltonian:

$$H_0 = \frac{p_x^2 + p_y^2}{2m} + \frac{K}{2}(x^2 + y^2)$$

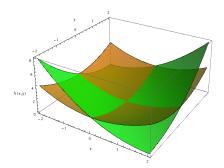
$$\psi_{np} = \varphi_n(x)\varphi_p(y) \rightarrow |np\rangle$$

• $E_{np} = \hbar\omega(n+p+1)$ is (n+p+1)-fold degenerate. What's the degeneracy of $|01\rangle$ state? $E_{10} = E_{01} = 2\hbar\omega_0$.



Example: Two-dimensional harmonic oscilator

Now, turn on the perturbation: H' = K'xy



Literature

Now, turn on the perturbation: H' = K'xy

• find w.f. which diagonalize H'

$$\varphi_1 = a\psi_{10} + b\psi_{01}$$
 $\varphi_2 = a'\psi_{10} + b'\psi_{01}$

Now, turn on the perturbation: H' = K'xy

• find w.f. which diagonalize H'

$$\varphi_1 = a\psi_{10} + b\psi_{01}$$

$$\varphi_2 = a'\psi_{10} + b'\psi_{01}$$

ullet calculate the elements of submatrix of H' in the basis $\{\psi_{10},\psi_{01}\}$

$$H' = K' \begin{pmatrix} \langle 10|xy|10 \rangle & \langle 10|xy|01 \rangle \\ \langle 01|xy|10 \rangle & \langle 01|xy|01 \rangle \end{pmatrix} = \mathbb{E} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\mathbb{E} = \frac{K'}{2\beta^2}, \ \beta^2 = \frac{m\omega_0}{\hbar}$$

Now, turn on the perturbation: H' = K'xy

• find w.f. which diagonalize H'

$$\varphi_1 = a\psi_{10} + b\psi_{01}$$

$$\varphi_2 = a'\psi_{10} + b'\psi_{01}$$

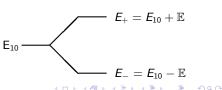
• calculate the elements of submatrix of H' in the basis $\{\psi_{10}, \psi_{01}\}$

$$H' = K' \left(\begin{array}{cc} \langle 10|xy|10 \rangle & \langle 10|xy|01 \rangle \\ \langle 01|xy|10 \rangle & \langle 01|xy|01 \rangle \end{array} \right) = \mathbb{E} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)$$

$$\mathbb{E} = \frac{K'}{2\beta^2} \,,\, \beta^2 = \frac{m\omega_0}{\hbar}$$

solve the secular equation

$$\left| \begin{array}{cc} -E' & \mathbb{E} \\ \mathbb{E} & -E' \end{array} \right| = 0 \Rightarrow E' = \pm \mathbb{E}$$



obtain the new w.f. from

$$\begin{pmatrix} -E' & \mathbb{E} \\ \mathbb{E} & -E' \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0$$

$$\Longrightarrow \begin{array}{c} E' = +\mathbb{E} \leadsto \varphi_1 = \frac{1}{\sqrt{2}} (\psi_{10} + \psi_{01}) \\ E' = -\mathbb{E} \leadsto \varphi_2 = \frac{1}{\sqrt{2}} (\psi_{10} - \psi_{01}) \end{array}$$

obtain the new w.f. from

$$\begin{pmatrix} -E' & \mathbb{E} \\ \mathbb{E} & -E' \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0$$

$$\implies E' = +\mathbb{E} \leadsto \varphi_1 = \frac{1}{\sqrt{2}} (\psi_{10} + \psi_{01})$$

$$E' = -\mathbb{E} \leadsto \varphi_2 = \frac{1}{\sqrt{2}} (\psi_{10} - \psi_{01})$$

HW

How does the threefold-degenerate energy

$$E=3\hbar\omega_0$$

of the two-dimensional harmonic oscilator separate due to the perturbation

$$H' = K'xy$$
?

Contents

- Time-independent nondegenerate perturbation theory
 - General formulation
 - First-order theory
 - Second-order theory
- 2 Time-independent degenerate perturbation theory
 - General formulation
 - Example: Two-dimensional harmonic oscilator
- 3 Time-dependent perturbation theory
- 4 Literature

Time-independent nondegenerate perturbation theory
Time-independent degenerate perturbation theory
Time-dependent perturbation theory
Literature

Problem

If the system is initially in H_0 , what is the probability that, after time t, transition to another state (of H_0) occurs?

Problem

If the system is initially in H_0 , what is the probability that, after time t, transition to another state (of H_0) occurs?

Let us assume:

•
$$H(\vec{r}, t) = H_0(\vec{r}) + \lambda H'(\vec{r}, t)$$

•
$$\psi_n(\vec{r},t) = \varphi_n(\vec{r})e^{-i\omega t}$$

 $H_0\varphi_n = E_n^0\varphi_n$

$$\begin{split} \bullet \;\; \Psi(\vec{r},t) &= \sum_n c_n(t) \psi_n(\vec{r},t) \,, \;\; t > 0 \\ i\hbar \frac{\partial \Psi}{\partial t} &= (H_0 + \lambda H') \Psi \end{split}$$

$$i\hbar\frac{\partial\Psi}{\partial t}=(H_0+\lambda H')\Psi$$

Problem

If the system is initially in H_0 , what is the probability that, after time t, transition to another state (of H₀) occurs?

Let us assume:

•
$$H(\vec{r},t) = H_0(\vec{r}) + \lambda H(\vec{r},t)$$

•
$$\psi_n(\vec{r},t) = \varphi_n(\vec{r})e^{-i\omega t}$$

 $H_0\varphi_n = E_n^0\varphi_n$

$$\begin{aligned} \bullet \ \ \Psi(\vec{r},t) &= \sum_{n} \mathbf{c}_{n}(t) \psi_{n}(\vec{r},t) \,, \ t > 0 \\ i\hbar \frac{\partial \Psi}{\partial t} &= (H_{0} + \lambda H') \Psi \end{aligned}$$

$$i\hbar\frac{\partial\Psi}{\partial t}=(H_0+\lambda H')\Psi$$

Can you remember the meaning of these coefficients?

Inserting $\Psi(\vec{r},t)$ and $c_n(t)=c_n^0+\lambda c_n^1(t)+\lambda^2 c_n^2(t)+\dots$ into time-dependent S.E. and factorizing the perturbation Hamiltonian as $H'(\vec{r},t)=\mathbb{H}'(\vec{r})f(t)$ gives

Probability that the system has undergone a transition from state ψ_l to state ψ_k at time t

$$P_{l\to k} = P_{lk} = |c_n|^2 = \left|\frac{\mathbb{H}'_{kl}}{\hbar}\right|^2 \left|\int_{-\infty}^t e^{i\omega_{kl}t'} f(t') dt'\right|^2$$

For calculation details, see Refs [2] and [3].

Contents

- Time-independent nondegenerate perturbation theory
 - General formulation
 - First-order theory
 - Second-order theory
- 2 Time-independent degenerate perturbation theory
 - General formulation
 - Example: Two-dimensional harmonic oscilator
- 3 Time-dependent perturbation theory
- 4 Literature

Literature

- I. Supek, Teorijska fizika i struktura materije, II. dio, Školska knjiga, Zagreb, 1989.
- D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., Pearson Education, Inc., Upper Saddle River, NJ, 2005.
- R. L. Liboff, Introductory Quantum Mechanics, Addison Wesley, San Francisco, 2003.
- A. Szabo, N. Ostlund, Modern Quantum Chemistry, Introduction to Advanced Electronic Structure theory, Dover Publications, New York, 1996.
- Y. Peleg, R. Pnini, E. Zaarur, Shaum's Outline of Theory and Problems of Quantum Mechanics, McGraw-Hill, 1998.